- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0000000004000000
- More
- Availability
-
22
- Author / Contributor
- Filter by Author / Creator
-
-
Bista, Dinesh (4)
-
Liu, Kai (3)
-
Yin, Gen (3)
-
Beeson, Willie_B (2)
-
Sengupta, Turbasu (2)
-
Beeson, Willie B (1)
-
Davydov, Albert_V (1)
-
Jackson, Jerome (1)
-
Khanna, Shiv N. (1)
-
Khanna, Shiv_N (1)
-
Krylyuk, Sergiy (1)
-
Kukreja, Roopali (1)
-
N'Diaye, Alpha T (1)
-
Naushin, Nushrat (1)
-
Zhang, Huairuo (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Magnetic high entropy alloys (HEAs) consisting of 3dtransition metals offer an exciting platform to explore novel magnetic phases as they often house competing exchange interactions in combination with random site disorders. In this work, a sensitive and tunable magnetic order is demonstrated in sputtered single‐layer FeCoNiMnAlxfilms, as a function of non‐magnetic Al addition, along with an unexpected exchange bias effect. Thin films of 50 nm FeCoNiMn exhibit a face‐centered‐cubic (fcc) phase, reentrant spin glass (SG) transition near 100 K, and a large exchange bias of over 500 Oe after field‐cooling to 5 K. The exchange bias is increased to 930 Oe through a small addition of 5 at.% Al. Further Al addition to 12 at.% results in a body‐centered‐cubic (bcc) phase, coinciding with a large increase in the saturation magnetization, decrease of exchange bias to 50 Oe, and suppression of SG behavior. The change in magnetic order across the Al‐induced structural transformation is mediated by the switching of Mn ground state from AF to FM, which is supported by first‐principles calculations and experimentally confirmed via X‐ray magnetic circular dichroism. These results open up new HEA strategies for explorations of novel magnetic phases.more » « lessFree, publicly-accessible full text available April 27, 2026
-
Bista, Dinesh; Beeson, Willie_B; Sengupta, Turbasu; Jackson, Jerome; Khanna, Shiv_N; Liu, Kai; Yin, Gen (, Physical Review Materials)
-
Sengupta, Turbasu; Bista, Dinesh; Khanna, Shiv N. (, ACS Catalysis)
-
Beeson, Willie_B; Bista, Dinesh; Zhang, Huairuo; Krylyuk, Sergiy; Davydov, Albert_V; Yin, Gen; Liu, Kai (, Advanced Science)Abstract The vast high entropy alloy (HEA) composition space is promising for discovery of new material phases with unique properties. This study explores the potential to achieve rare‐earth‐free high magnetic anisotropy materials in single‐phase HEA thin films. Thin films of FeCoNiMnCu sputtered on thermally oxidized Si/SiO2substrates at room temperature are magnetically soft, with a coercivity on the order of 10 Oe. After post‐deposition rapid thermal annealing (RTA), the films exhibit a single face‐centered‐cubic phase, with an almost 40‐fold increase in coercivity. Inclusion of 50 at.% Pt in the film leads to ordering of a singleL10high entropy intermetallic phase after RTA, along with high magnetic anisotropy and 3 orders of magnitude coercivity increase. These results demonstrate a promising HEA approach to achieve high magnetic anisotropy materials using RTA.more » « less
An official website of the United States government
